Custom Search

Monday, June 8, 2009

Winrunner FAQs - I

1) How you used WinRunner in your project?
a. Yes, I have been WinRunner for creating automates scripts for GUI, functional and regression testing of the AUT.

2) Explain WinRunner testing process?
a. WinRunner testing process involves six main stages
i. Create GUI Map File so that WinRunner can recognize the GUI objects in the application being tested
ii. Create test scripts by recording, programming, or a combination of both. While recording tests, insert checkpoints where you want to check the response of the application being tested.
iii. Debug Test: run tests in Debug mode to make sure they run smoothly
iv. Run Tests: run tests in Verify mode to test your application.
v. View Results: determines the success or failure of the tests.
vi. Report Defects: If a test run fails due to a defect in the application being tested, you can report information about the defect directly from the Test Results window.

3) What in contained in the GUI map?
a. WinRunner stores information it learns about a window or object in a GUI Map. When WinRunner runs a test, it uses the GUI map to locate objects. It reads an object’s description in the GUI map and then looks for an object with the same properties in the application being tested. Each of these objects in the GUI Map file will be having a logical name and a physical description.
b. There are 2 types of GUI Map files.
i. Global GUI Map file: a single GUI Map file for the entire application
ii. GUI Map File per Test: WinRunner automatically creates a GUI Map file for each test created.

4) How does WinRunner recognize objects on the application?
a. WinRunner uses the GUI Map file to recognize objects on the application. When WinRunner runs a test, it uses the GUI map to locate objects. It reads an object’s description in the GUI map and then looks for an object with the same properties in the application being tested.

5) Have you created test scripts and what is contained in the test scripts?
a. Yes I have created test scripts. It contains the statement in Mercury Interactive’s Test Script Language (TSL). These statements appear as a test script in a test window. You can then enhance your recorded test script, either by typing in additional TSL functions and programming elements or by using Win Runner’s visual programming tool, the Function Generator.

6) How does Win Runner evaluates test results?
a. Following each test run, WinRunner displays the results in a report. The report details all the major events that occurred during the run, such as checkpoints, error messages, system messages, or user messages. If mismatches are detected at checkpoints during the test run, you can view the expected results and the actual results from the Test Results window.

7) Have you performed debugging of the scripts?
a. Yes, I have performed debugging of scripts. We can debug the script by executing the script in the debug mode. We can also debug script using the Step, Step Into, Step out functionalities provided by the WinRunner.

8) How do you run your test scripts?
a. We run tests in Verify mode to test your application. Each time WinRunner encounters a checkpoint in the test script, it compares the current data of the application being tested to the expected data captured earlier. If any mismatches
b. are found, WinRunner captures them as actual results.

9) How do you analyze results and report the defects?
a. Following each test run, WinRunner displays the results in a report. The report details all the major events that occurred during the run, such as checkpoints, error messages, system messages, or user messages. If mismatches are detected at checkpoints during the test run, you can view the expected results and the actual results from the Test Results window. If a test run fails due to a defect in the application being tested, you can report information about the defect directly from the Test Results window. This information is sent via e-mail to the quality assurance manager, who tracks the defect until it is fixed.

10) What is the use of Test Director software?
a. Test Director is Mercury Interactive’s software test management tool. It helps quality assurance personnel plan and organize the testing process. With Test Director you can create a database of manual and automated tests, build test cycles, run tests, and report and track defects. You can also create reports and graphs to help review the progress of planning tests, running tests, and tracking defects before a software release.

11) How you integrated your automated scripts from Test Director?
a. When you work with WinRunner, you can choose to save your tests directly to your Test Director database or while creating a test case in the Test Director we can specify whether the script in automated or manual. And if it is automated script then Test Director will build a skeleton for the script that can be later modified into one which could be used to test the AUT.

12) What are the different modes of recording?
a. There are two type of recording in WinRunner.
i. Context Sensitive recording records the operations you perform on your application by identifying Graphical User Interface (GUI) objects.
ii. Analog recording records keyboard input, mouse clicks, and the precise x- and y-coordinates traveled by the mouse pointer across the screen.

13) What is the purpose of loading WinRunner Add-Ins?
a. Add-Ins are used in WinRunner to load functions specific to the particular add-in to the memory. While creating a script only those functions in the add-in selected will be listed in the function generator and while executing the script only those functions in the loaded add-in will be executed else WinRunner will give an error message saying it does not recognize the function.

14) What are the reasons that WinRunner fails to identify an object on the GUI?
a. WinRunner fails to identify an object in a GUI due to various reasons.
i. The object is not a standard windows object.
ii. If the browser used is not compatible with the WinRunner version, GUI Map Editor will not be able to learn any of the objects displayed in the browser window.

15) What do you mean by the logical name of the object.
a. An object’s logical name is determined by its class. In most cases, the logical name is the label that appears on an object.

16) If the object does not have a name then what will be the logical name?
a. If the object does not have a name then the logical name could be the attached text.

17) What is the different between GUI map and GUI map files?
a. The GUI map is actually the sum of one or more GUI map files. There are two modes for organizing GUI map files.
i. Global GUI Map file: a single GUI Map file for the entire application
ii. GUI Map File per Test: WinRunner automatically creates a GUI Map file for each test created.
b. GUI Map file is a file which contains the windows and the objects learned by the WinRunner with its logical name and their physical description.

18) How do you view the contents of the GUI map?
a. GUI Map editor displays the content of a GUI Map. We can invoke GUI Map Editor from the Tools Menu in WinRunner. The GUI Map Editor displays the various GUI Map files created and the windows and objects learned in to them with their logical name and physical description.

19) When you create GUI map do you record all the objects of specific objects?
a. If we are learning a window then WinRunner automatically learns all the objects in the window else we will we identifying those object, which are to be learned in a window, since we will be working with only those objects while creating scripts.

20) What is the purpose of set_window command?
a. Set_Window command sets the focus to the specified window. We use this command to set the focus to the required window before executing tests on a particular window.

Syntax: set_window (logical name, time);
The logical name is the logical name of the window and time is the time the execution has to wait till it gets the given window into focus.

21) How do you load GUI map?
a. We can load a GUI Map by using the GUI_load command.

Syntax: GUI_load();

22) What is the disadvantage of loading the GUI maps through start up scripts?
a. If we are using a single GUI Map file for the entire AUT then the memory used by the GUI Map may be much high.
b. If there is any change in the object being learned then WinRunner will not be able to recognize the object, as it is not in the GUI Map file loaded in the memory. So we will have to learn the object again and update the GUI File and reload it.

23) How do you unload the GUI map?
a. We can use GUI_close to unload a specific GUI Map file or else we call use GUI_close_all command to unload all the GUI Map files loaded in the memory.

Syntax: GUI_close(); or GUI_close_all;

24) What actually happens when you load GUI map?
a. When we load a GUI Map file, the information about the windows and the objects with their logical names and physical description are loaded into memory. So when the WinRunner executes a script on a particular window, it can identify the objects using this information loaded in the memory.


25) What is the purpose of the temp GUI map file?
a. While recording a script, WinRunner learns objects and windows by itself. This is actually stored into the temporary GUI Map file. We can specify whether we have to load this temporary GUI Map file should be loaded each time in the General Options.

26) What is the extension of gui map file?
a. The extension for a GUI Map file is “.gui”.

27) How do you find an object in an GUI map.
a. The GUI Map Editor is been provided with a Find and Show Buttons.
i. To find a particular object in the GUI Map file in the application, select the object and click the Show window. This blinks the selected object.
ii. To find a particular object in a GUI Map file click the Find button, which gives the option to select the object. When the object is selected, if the object has been learned to the GUI Map file it will be focused in the GUI Map file.

28) What different actions are performed by find and show button?
a. To find a particular object in the GUI Map file in the application, select the object and click the Show window. This blinks the selected object.
b. To find a particular object in a GUI Map file click the Find button, which gives the option to select the object. When the object is selected, if the object has been learned to the GUI Map file it will be focused in the GUI Map file.

29) How do you identify which files are loaded in the GUI map?
a. The GUI Map Editor has a drop down “GUI File” displaying all the GUI Map files loaded into the memory.

30) How do you modify the logical name or the physical description of the objects in GUI map?
a. You can modify the logical name or the physical description of an object in a GUI map file using the GUI Map Editor.

31) When do you feel you need to modify the logical name?
a. Changing the logical name of an object is useful when the assigned logical name is not sufficiently descriptive or is too long.

32) When it is appropriate to change physical description?
a. Changing the physical description is necessary when the property value of an object changes.

33) How WinRunner handles varying window labels?
a. We can handle varying window labels using regular expressions. WinRunner uses two “hidden” properties in order to use regular expression in an object’s physical description. These properties are regexp_label and regexp_MSW_class.
i. The regexp_label property is used for windows only. It operates “behind the scenes” to insert a regular expression into a window’s label description.
ii. The regexp_MSW_class property inserts a regular expression into an object’s MSW_class. It is obligatory for all types of windows and for the object class object.

34) What is the purpose of regexp_label property and regexp_MSW_class property?
a. The regexp_label property is used for windows only. It operates “behind the scenes” to insert a regular expression into a window’s label description.
b. The regexp_MSW_class property inserts a regular expression into an object’s MSW_class. It is obligatory for all types of windows and for the object class object.

35) How do you suppress a regular expression?
a. We can suppress the regular expression of a window by replacing the regexp_label property with label property.

36) How do you copy and move objects between different GUI map files?
a. We can copy and move objects between different GUI Map files using the GUI Map Editor. The steps to be followed are:
i. Choose Tools > GUI Map Editor to open the GUI Map Editor.
ii. Choose View > GUI Files.
iii. Click Expand in the GUI Map Editor. The dialog box expands to display two GUI map files simultaneously.
iv. View a different GUI map file on each side of the dialog box by clicking the file names in the GUI File lists.
v. In one file, select the objects you want to copy or move. Use the Shift key and/or Control key to select multiple objects. To select all objects in a GUI map file, choose Edit > Select All.
vi. Click Copy or Move.
vii. To restore the GUI Map Editor to its original size, click Collapse.

37) How do you select multiple objects during merging the files?
a. Use the Shift key and/or Control key to select multiple objects. To select all objects in a GUI map file, choose Edit > Select All.

38) How do you clear a GUI map files?
a. We can clear a GUI Map file using the “Clear All” option in the GUI Map Editor.
39) How do you filter the objects in the GUI map?
a. GUI Map Editor has a Filter option. This provides for filtering with 3 different types of options.
i. Logical name displays only objects with the specified logical name.
ii. Physical description displays only objects matching the specified physical description. Use any substring belonging to the physical description.
iii. Class displays only objects of the specified class, such as all the push buttons.

40) How do you configure GUI map?
a. When WinRunner learns the description of a GUI object, it does not learn all its properties. Instead, it learns the minimum number of properties to provide a unique identification of the object.
b. Many applications also contain custom GUI objects. A custom object is any object not belonging to one of the standard classes used by WinRunner. These objects are therefore assigned to the generic “object” class. When WinRunner records an operation on a custom object, it generates obj_mouse_ statements in the test script.
c. If a custom object is similar to a standard object, you can map it to one of the standard classes. You can also configure the properties WinRunner uses to identify a custom object during Context Sensitive testing. The mapping and the configuration you set are valid only for the current WinRunner session. To make the mapping and the configuration permanent, you must add configuration statements to your startup test script.

41) What is the purpose of GUI map configuration?
a. GUI Map configuration is used to map a custom object to a standard object.

42) How do you make the configuration and mappings permanent?
a. The mapping and the configuration you set are valid only for the current WinRunner session. To make the mapping and the configuration permanent, you must add configuration statements to your startup test script.

43) What is the purpose of GUI spy?
a. Using the GUI Spy, you can view the properties of any GUI object on your desktop. You use the Spy pointer to point to an object, and the GUI Spy displays the properties and their values in the GUI Spy dialog box. You can choose to view all the properties of an object, or only the selected set of properties that WinRunner learns.


44) What is the purpose of obligatory and optional properties of the objects?
a. For each class, WinRunner learns a set of default properties. Each default property is classified “obligatory” or “optional”.
i. An obligatory property is always learned (if it exists).
ii. An optional property is used only if the obligatory properties do not provide unique identification of an object. These optional properties are stored in a list. WinRunner selects the minimum number of properties from this list that are necessary to identify the object. It begins with the first property in the list, and continues, if necessary, to add properties to the description until it obtains unique identification for the object.

45) When the optional properties are learned?
a. An optional property is used only if the obligatory properties do not provide unique identification of an object.

46) What is the purpose of location indicator and index indicator in GUI map configuration?
a. In cases where the obligatory and optional properties do not uniquely identify an object, WinRunner uses a selector to differentiate between them. Two types of selectors are available:
i. A location selector uses the spatial position of objects.
1. The location selector uses the spatial order of objects within the window, from the top left to the bottom right corners, to differentiate among objects with the same description.
ii. An index selector uses a unique number to identify the object in a window.
1. The index selector uses numbers assigned at the time of creation of objects to identify the object in a window. Use this selector if the location of objects with the same description may change within a window.

47) How do you handle custom objects?
a. A custom object is any GUI object not belonging to one of the standard classes used by WinRunner. WinRunner learns such objects under the generic “object” class. WinRunner records operations on custom objects using obj_mouse_ statements.
b. If a custom object is similar to a standard object, you can map it to one of the standard classes. You can also configure the properties WinRunner uses to identify a custom object during Context Sensitive testing.

48) What is the name of custom class in WinRunner and what methods it applies on the custom objects?
a. WinRunner learns custom class objects under the generic “object” class. WinRunner records operations on custom objects using obj_ statements.
49) In a situation when obligatory and optional both the properties cannot uniquely identify an object what method WinRunner applies?
a. In cases where the obligatory and optional properties do not uniquely identify an object, WinRunner uses a selector to differentiate between them. Two types of selectors are available:
i. A location selector uses the spatial position of objects.
ii. An index selector uses a unique number to identify the object in a window.

50) What is the purpose of different record methods 1) Record 2) Pass up 3) As Object 4) Ignore.
a. Record instructs WinRunner to record all operations performed on a GUI object. This is the default record method for all classes. (The only exception is the static class (static text), for which the default is Pass Up.)
b. Pass Up instructs WinRunner to record an operation performed on this class as an operation performed on the element containing the object. Usually this element is a window, and the operation is recorded as win_mouse_click.
c. As Object instructs WinRunner to record all operations performed on a GUI object as though its class were “object” class.
d. Ignore instructs WinRunner to disregard all operations performed on the class.

51) How do you find out which is the start up file in WinRunner?
a. The test script name in the Startup Test box in the Environment tab in the General Options dialog box is the start up file in WinRunner.

52) What are the virtual objects and how do you learn them?
a. Applications may contain bitmaps that look and behave like GUI objects. WinRunner records operations on these bitmaps using win_mouse_click statements. By defining a bitmap as a virtual object, you can instruct WinRunner to treat it like a GUI object such as a push button, when you record and run tests.
b. Using the Virtual Object wizard, you can assign a bitmap to a standard object class, define the coordinates of that object, and assign it a logical name.
To define a virtual object using the Virtual Object wizard:
i. Choose Tools > Virtual Object Wizard. The Virtual Object wizard opens. Click Next.
ii. In the Class list, select a class for the new virtual object. If rows that are displayed in the window. For a table class, select the number of visible rows and columns. Click Next.
iii. Click Mark Object. Use the crosshairs pointer to select the area of the virtual object. You can use the arrow keys to make precise adjustments to the area you define with the crosshairs. Press Enter or click the right mouse button to display the virtual object’s coordinates in the wizard. If the object marked is visible on the screen, you can click the Highlight button to view it. Click Next.
iv. Assign a logical name to the virtual object. This is the name that appears in the test script when you record on the virtual object. If the object contains text that WinRunner can read, the wizard suggests using this text for the logical name. Otherwise, WinRunner suggests virtual_object, virtual_push_button, virtual_list, etc.
v. You can accept the wizard’s suggestion or type in a different name. WinRunner checks that there are no other objects in the GUI map with the same name before confirming your choice. Click Next.

53) How you created you test scripts 1) by recording or 2) programming?
a. Programming. I have done complete programming only, absolutely no recording.
54) What are the two modes of recording?
a. There are 2 modes of recording in WinRunner
i. Context Sensitive recording records the operations you perform on your application by identifying Graphical User Interface (GUI) objects.
ii. Analog recording records keyboard input, mouse clicks, and the precise x- and y-coordinates traveled by the mouse pointer across the screen.

55) What is a checkpoint and what are different types of checkpoints?
a. Checkpoints allow you to compare the current behavior of the application being tested to its behavior in an earlier version.

You can add four types of checkpoints to your test scripts:

i. GUI checkpoints verify information about GUI objects. For example, you can check that a button is enabled or see which item is selected in a list.
ii. Bitmap checkpoints take a “snapshot” of a window or area of your application and compare this to an image captured in an earlier version.
iii. Text checkpoints read text in GUI objects and in bitmaps and enable you to verify their contents.
iv. Database checkpoints check the contents and the number of rows and columns of a result set, which is based on a query you create on your database.

56) What are data driven tests?
a. When you test your application, you may want to check how it performs the same operations with multiple sets of data. You can create a data-driven test with a loop that runs ten times: each time the loop runs, it is driven by a different set of data. In order for WinRunner to use data to drive the test, you must link the data to the test script which it drives. This is called parameterizing your test. The data is stored in a data table. You can perform these operations manually, or you can use the DataDriver Wizard to parameterize your test and store the data in a data table.

57) What are the synchronization points?
a. Synchronization points enable you to solve anticipated timing problems between the test and your application. For example, if you create a test that opens a database application, you can add a synchronization point that causes the test to wait until the database records are loaded on the screen.
b. For Analog testing, you can also use a synchronization point to ensure that WinRunner repositions a window at a specific location. When you run a test, the mouse cursor travels along exact coordinates. Repositioning the window enables the mouse pointer to make contact with the correct elements in the window.

58) What is parameterizing?
a. In order for WinRunner to use data to drive the test, you must link the data to the test script which it drives. This is called parameterizing your test. The data is stored in a data table.

59) How do you maintain the document information of the test scripts?
a. Before creating a test, you can document information about the test in the General and Description tabs of the Test Properties dialog box. You can enter the name of the test author, the type of functionality tested, a detailed description of the test, and a reference to the relevant functional specifications document.
60) What do you verify with the GUI checkpoint for single property and what command it generates, explain syntax?
a. You can check a single property of a GUI object. For example, you can check whether a button is enabled or disabled or whether an item in a list is selected. To create a GUI checkpoint for a property value, use the Check Property dialog box to add one of the following functions to the test script:
i. button_check_info
ii. scroll_check_info
iii. edit_check_info
iv. static_check_info
v. list_check_info
vi. win_check_info
vii. obj_check_info

Syntax: button_check_info (button, property, property_value );
edit_check_info ( edit, property, property_value );


61) What do you verify with the GUI checkpoint for object/window and what command it generates, explain syntax?
a. You can create a GUI checkpoint to check a single object in the application being tested. You can either check the object with its default properties or you can specify which properties to check.
b. Creating a GUI Checkpoint using the Default Checks
i. You can create a GUI checkpoint that performs a default check on the property recommended by WinRunner. For example, if you create a GUI checkpoint that checks a push button, the default check verifies that the push button is enabled.
ii. To create a GUI checkpoint using default checks:
1. Choose Create > GUI Checkpoint > For Object/Window, or click the GUI Checkpoint for Object/Window button on the User toolbar. If you are recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in order to avoid extraneous mouse movements. Note that you can press the CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well. The WinRunner window is minimized, the mouse pointer becomes a pointing hand, and a help window opens on the screen.
2. Click an object.
3. WinRunner captures the current value of the property of the GUI object being checked and stores it in the test’s expected results folder. The WinRunner window is restored and a GUI checkpoint is inserted in the test script as an obj_check_gui statement

Syntax: win_check_gui ( window, checklist, expected_results_file, time );

c. Creating a GUI Checkpoint by Specifying which Properties to Check
d. You can specify which properties to check for an object. For example, if you create a checkpoint that checks a push button, you can choose to verify that it is in focus, instead of enabled.

e. To create a GUI checkpoint by specifying which properties to check:

i. Choose Create > GUI Checkpoint > For Object/Window, or click the GUI Checkpoint for Object/Window button on the User toolbar. If you are recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in order to avoid extraneous mouse movements. Note that you can press the CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well. The WinRunner window is minimized, the mouse pointer becomes a pointing hand, and a help window opens on the screen.
ii. Double-click the object or window. The Check GUI dialog box opens.
iii. Click an object name in the Objects pane. The Properties pane lists all the properties for the selected object.
iv. Select the properties you want to check.
1. To edit the expected value of a property, first select it. Next, either click the Edit Expected Value button, or double-click the value in the Expected Value column to edit it.
2. To add a check in which you specify arguments, first select the property for which you want to specify arguments. Next, either click the Specify Arguments button, or double-click in the Arguments column. Note that if an ellipsis (three dots) appears in the Arguments column, then you must specify arguments for a check on this property. (You do not need to specify arguments if a default argument is specified.) When checking standard objects, you only specify arguments for certain properties of edit and static text objects. You also specify arguments for checks on certain properties of nonstandard objects.
3. To change the viewing options for the properties of an object, use the Show Properties buttons.
4. Click OK to close the Check GUI dialog box. WinRunner captures the GUI information and stores it in the test’s expected results folder. The WinRunner window is restored and a GUI checkpoint is inserted in the test script as an obj_check_gui or a win_check_gui statement.

Syntax: win_check_gui ( window, checklist, expected_results_file, time );
obj_check_gui ( object, checklist, expected results file, time );


62) What do you verify with the GUI checkpoint for multiple objects and what command it generates, explain syntax?
a. To create a GUI checkpoint for two or more objects:
i. Choose Create > GUI Checkpoint > For Multiple Objects or click the GUI Checkpoint for Multiple Objects button on the User toolbar. If you are recording in Analog mode, press the CHECK GUI FOR MULTIPLE OBJECTS softkey in order to avoid extraneous mouse movements. The Create GUI Checkpoint dialog box opens.
ii. Click the Add button. The mouse pointer becomes a pointing hand and a help window opens.
iii. To add an object, click it once. If you click a window title bar or menu bar, a help window prompts you to check all the objects in the window.
iv. The pointing hand remains active. You can continue to choose objects by repeating step 3 above for each object you want to check.
v. Click the right mouse button to stop the selection process and to restore the mouse pointer to its original shape. The Create GUI Checkpoint dialog box reopens.
vi. The Objects pane contains the name of the window and objects included in the GUI checkpoint. To specify which objects to check, click an object name in the Objects pane. The Properties pane lists all the properties of the object. The default properties are selected.
1. To edit the expected value of a property, first select it. Next, either click the Edit Expected Value button, or double-click the value in the Expected Value column to edit it.
2. To add a check in which you specify arguments, first select the property for which you want to specify arguments. Next, either click the Specify Arguments button, or double-click in the Arguments column. Note that if an ellipsis appears in the Arguments column, then you must specify arguments for a check on this property. (You do not need to specify arguments if a default argument is specified.) When checking standard objects, you only specify arguments for certain properties of edit and static text objects. You also specify arguments for checks on certain properties of nonstandard objects.
3. To change the viewing options for the properties of an object, use the Show Properties buttons.
vii. To save the checklist and close the Create GUI Checkpoint dialog box, click OK. WinRunner captures the current property values of the selected GUI objects and stores it in the expected results folder. A win_check_gui statement is inserted in the test script.

Syntax: win_check_gui ( window, checklist, expected_results_file, time );
obj_check_gui ( object, checklist, expected results file, time );

63) What information is contained in the checklist file and in which file expected results are stored?
a. The checklist file contains information about the objects and the properties of the object we are verifying.
b. The gui*.chk file contains the expected results which is stored in the exp folder
64) What do you verify with the bitmap check point for object/window and what command it generates, explain syntax?
a. You can check an object, a window, or an area of a screen in your application as a bitmap. While creating a test, you indicate what you want to check. WinRunner captures the specified bitmap, stores it in the expected results folder (exp) of the test, and inserts a checkpoint in the test script. When you run the test, WinRunner compares the bitmap currently displayed in the application being tested with the expected bitmap stored earlier. In the event of a mismatch, WinRunner captures the current actual bitmap and generates a difference bitmap. By comparing the three bitmaps (expected, actual, and difference), you can identify the nature of the discrepancy.
b. When working in Context Sensitive mode, you can capture a bitmap of a window, object, or of a specified area of a screen. WinRunner inserts a checkpoint in the test script in the form of either a win_check_bitmap or obj_check_bitmap statement.
c. Note that when you record a test in Analog mode, you should press the CHECK BITMAP OF WINDOW softkey or the CHECK BITMAP OF SCREEN AREA softkey to create a bitmap checkpoint. This prevents WinRunner from recording extraneous mouse movements. If you are programming a test, you can also use the Analog function check_window to check a bitmap.

d. To capture a window or object as a bitmap:

i. Choose Create > Bitmap Checkpoint > For Object/Window or click the Bitmap Checkpoint for Object/Window button on the User toolbar. Alternatively, if you are recording in Analog mode, press the CHECK BITMAP OF OBJECT/WINDOW softkey. The WinRunner window is minimized, the mouse pointer becomes a pointing hand, and a help window opens.
ii. Point to the object or window and click it. WinRunner captures the bitmap and generates a win_check_bitmap or obj_check_bitmap statement in the script. The TSL statement generated for a window bitmap has the following syntax:
win_check_bitmap ( object, bitmap, time );
iii. For an object bitmap, the syntax is:
obj_check_bitmap ( object, bitmap, time );

iv. For example, when you click the title bar of the main window of the Flight Reservation application, the resulting statement might be:
win_check_bitmap ("Flight Reservation", "Img2", 1);
v. However, if you click the Date of Flight box in the same window, the statement might be:
obj_check_bitmap ("Date of Flight:", "Img1", 1);

Syntax: obj_check_bitmap ( object, bitmap, time [, x, y, width, height] );


65) What do you verify with the bitmap checkpoint for screen area and what command it generates, explain syntax?
a. You can define any rectangular area of the screen and capture it as a bitmap for comparison. The area can be any size: it can be part of a single window, or it can intersect several windows. The rectangle is identified by the coordinates of its upper left and lower right corners, relative to the upper left corner of the window in which the area is located. If the area intersects several windows or is part of a window with no title (for example, a popup window), its coordinates are relative to the entire screen (the root window).

b. To capture an area of the screen as a bitmap:

i. Choose Create > Bitmap Checkpoint > For Screen Area or click the Bitmap Checkpoint for Screen Area button. Alternatively, if you are recording in Analog mode, press the CHECK BITMAP OF SCREEN AREA softkey. The WinRunner window is minimized, the mouse pointer becomes a crosshairs pointer, and a help window opens.
ii. Mark the area to be captured: press the left mouse button and drag the mouse pointer until a rectangle encloses the area; then release the mouse button.
iii. Press the right mouse button to complete the operation. WinRunner captures the area and generates a win_check_bitmap statement in your script.
iv. The win_check_bitmap statement for an area of the screen has the following syntax:

win_check_bitmap ( window, bitmap, time, x, y, width, height );

66) What do you verify with the database checkpoint default and what command it generates, explain syntax?
a. By adding runtime database record checkpoints you can compare the information in your application during a test run with the corresponding record in your database. By adding standard database checkpoints to your test scripts, you can check the contents of databases in different versions of your application.
b. When you create database checkpoints, you define a query on your database, and your database checkpoint checks the values contained in the result set. The result set is set of values retrieved from the results of the query.
c. You can create runtime database record checkpoints in order to compare the values displayed in your application during the test run with the corresponding values in the database. If the comparison does not meet the success criteria you
d. specify for the checkpoint, the checkpoint fails. You can define a successful runtime database record checkpoint as one where one or more matching records were found, exactly one matching record was found, or where no matching records are found.
e. You can create standard database checkpoints to compare the current values of the properties of the result set during the test run to the expected values captured during recording or otherwise set before the test run. If the expected results and the current results do not match, the database checkpoint fails. Standard database checkpoints are useful when the expected results can be established before the test run.

Syntax: db_check(, );

f. You can add a runtime database record checkpoint to your test in order to compare information that appears in your application during a test run with the current value(s) in the corresponding record(s) in your database. You add runtime database record checkpoints by running the Runtime Record Checkpoint wizard. When you are finished, the wizard inserts the appropriate db_record_check statement into your script.

Syntax:
db_record_check(ChecklistFileName,SuccessConditions,RecordNumber );

ChecklistFileName A file created by WinRunner and saved in the test's checklist folder. The file contains information about the data to be captured during the test run and its corresponding field in the database. The file is created based on the information entered in the Runtime Record Verification wizard.
SuccessConditions Contains one of the following values:
1. DVR_ONE_OR_MORE_MATCH - The checkpoint passes if one or more matching database records are found.
2. DVR_ONE_MATCH - The checkpoint passes if exactly one matching database record is found.
3. DVR_NO_MATCH - The checkpoint passes if no matching database records are found.
RecordNumber An out parameter returning the number of records in the database.

67) How do you handle dynamically changing area of the window in the bitmap checkpoints?
a. The difference between bitmaps option in the Run Tab of the general options defines the minimum number of pixels that constitute a bitmap mismatch

68) What do you verify with the database check point custom and what command it generates, explain syntax?
a. When you create a custom check on a database, you create a standard database checkpoint in which you can specify which properties to check on a result set.
b. You can create a custom check on a database in order to:
i. check the contents of part or the entire result set
ii. edit the expected results of the contents of the result set
iii. count the rows in the result set
iv. count the columns in the result set
c. You can create a custom check on a database using ODBC, Microsoft Query or Data Junction.

69) What do you verify with the sync point for object/window property and what command it generates, explain syntax?
a. Synchronization compensates for inconsistencies in the performance of your application during a test run. By inserting a synchronization point in your test script, you can instruct WinRunner to suspend the test run and wait for a cue before continuing the test.
b. You can a synchronization point that instructs WinRunner to wait for a specified object or window to appear. For example, you can tell WinRunner to wait for a window to open before performing an operation within that window, or you may want WinRunner to wait for an object to appear in order to perform an operation on that object.
c. You use the obj_exists function to create an object synchronization point, and you use the win_exists function to create a window synchronization point. These functions have the following syntax:
Syntax:
obj_exists ( object [, time ] );
win_exists ( window [, time ] );